Language processing centre found in the brain?

There’s a post on Slashdot reporting that MIT researchers have found a part of the brain that is solely for language processing:

According to the study, there are parts of our brain dedicated to language and only language. After having their subjects perform the initial language task, which they call a ‘functional localizer,’ they had each one do a subset of seven other experiments: one on exact arithmetic, two on working memory, three on cognitive control, and one on music; since these are the functions ‘most commonly argued to share neural machinery with language.’ The authors say the results don’t imply that every cognitive function has its own dedicated piece of cortex; after all, we’re able to learn new skills, so there must be some parts of the brain that are both high-level and functionally flexible.”

Again, the discussion that follows is just as interesting – I see here a replacement for long delay times in peer review, as well as the ability to draw links between studies that were otherwise unseen. One commenter points to an article at Scientific American titled Reading Braille Activates the Brain’s Visual Area:

Quote: “Researchers in Israel, Canada and France used brain imaging to observe the neural activity of eight blind subjects as they read Braille. They found that although the blind subjects were using their sense of touch, their brains showed activity in the same so-called visual region that sighted people use when they read.

Another points out some strengths in the original study that I would never have thought of:

As someone who does neuroimaging research, what appears to be exciting about this approach to fMRI is that it is on an individual-by-individual basis, not at a group level (which is mentioned in the MITNews article). Almost all fMRI work is at a group level. While I perform some group analyses, most of my work is on an individual basis (but I do structural imaging, not functional). Group analyses can have severe limitations that are not always discussed by the researchers and are almost never understood by people outside the field of neuroimaging.

From the article: “It’s the same way for brains. ‘Brains are different in their folding patterns, and where exactly the different functional areas fall relative to these patterns,’ Fedorenko says. ‘The general layout is similar, but there isn’t fine-grained matching.’ So, she says, analyzing data by ‘aligning brains in some common space is just never going to be quite right. Ideally, then, data would be analyzed for each subject individually; that is, patterns of activity in one brain would only ever be compared to patterns of activity from that same brain.”

And another points to a video that explains how the learning process may affect which parts of the brain are used for any particular function:

One example that comes to mind is students from one country (France, IIRC) showed a lot of activation in the hearing areas of the brain when doing simple arithmetic tasks. They said this was because they learned arithmetic through rote repetition of tables, and thus used those aural regions when doing the tasks. (They also said they preferred doing math problems in a quiet environment to avoid distraction.)